0040-4039/78/0429-1579. \$02.00/0.

A SYNTHESIS OF TABERSONINE

Jean Lévy^{*}, Jean-Yves Laronze, Jacqueline Laronze and Jean Le Men Laboratoire de Transformations et Synthèse de Substances Naturelles, Faculté de Pharmacie, 51 rue Cognacq-Jay, 51096 REIMS CEDEX, FRANCE-ERA au CNRS n° 319

(Received in UK 21 February 1978; accepted for publication 17 March 1978)

Tabersonine $1^{1,2}$ has been synthesised by Ziegler³. The present communication deals with a new synthetic access to this alkaloid. In a previous report⁴ from these laboratories, the three-step synthesis of $(\stackrel{+}{-})$ -3-oxovincadifformine 3 from 2-hydroxytryptamine was described, together with its conversion to $(\stackrel{+}{-})$ -vincadifformine 5. Compound 3 appeared a suitable key intermediate for introduction of the 14,15-double bond. We now present preliminary results to this effect using (-)-3 (obtained⁵ from natural (-)-tabersonine 1).

The dianion of 3, generated in a 20:1 mixture of THF/HMPA(v/v) at -78°C with lithium diisopropylamide, was treated with a large excess of phenylselenyl chloride (\emptyset SeCl)⁶ to yield the disubstituted derivative $\underline{7}^7$ (47%). Elimination of one substituent by oxidation with MCPBA⁸yielded (88%) the unsaturated monosubstituted derivative 6, which did not undergo catalytic hydrogenation.

The non-oxidative abstraction of one \emptyset Se group in <u>7</u> was achieved by attack with phenylsulfide anion, generated from thiophenol⁹. Derivatives <u>4a</u> and <u>4b</u>, differing in the orientation of the \emptyset Se substituent were thus obtained (85%). Oxidative elimination⁸ of the remaining \emptyset Se was effected on the mixture of <u>4a</u>,<u>b</u> and afforded <u>2</u>, which was shown to be identical with authentic (-)-3-oxotabersonine. Finally, the selective removal of the lactam carbonyl through controlled reduction of <u>2</u> with LiAlH₄ in THF at 0°C for 4 hours yielded (-)-tabersonine <u>1</u> (38%), along with unchanged starting material (55%).

$\underline{\mathbf{T}} \underline{\mathbf{A}} \underline{\mathbf{B}} \underline{\mathbf{L}} \underline{\mathbf{E}}$

Compound	m.p. °C	(α) _D (CHC1 ₃)	м.+	MeOH مس	v ^{KB} r ₁
<u>7</u>	215	- 171	660,662,664	225,295,325	1600,1620,1640 _{sh} ,1675
<u>6</u>	230	- 79	504,506	230,295,325	1600,1620,1640 _{sh} ,1675
(less polar)	205	- 148	506,508	216,295,330	1605,1635 _{sh} ,1650,1665 _{sh}
(more polar)	105-10	- 70	506,508	225,298,330	1605,1635 _{sh} ,1650,1670 _{sh}

NOTES AND REFERENCES

- 1. M.-M.Janot, H.Pourrat and J.Le Men, Bull.Soc.Chim.France, 707 (1954).
- M.Plat, J.Le Men, M.-M.Janot, H.Budzikiewicz, J.M.Wilson, L.J.Durham and C.Djerassi, Bull.Soc. Chim.France, 2237 (1962).
- 3. F.E.Ziegler and G.B.Bennett, J.Amer.Chem.Soc., 93, 5390(1971); 95, 7458 (1973).
- 4. J.-Y.Laronze, J.Laronze-Fontaine, J.Lévy and J.Le Men, Tetrahedron Lett., 491(1974).
- 5. S.Sakaĭ, Heterocycles, 4,131(1976).
- P.A.Zoretic and P.Soja, J.Org.Chem., <u>41</u>, 3587(1976); P.G.Gassman and R.J.Balchunis, J.Org. Chem., <u>42</u>, 3236(1977).
- 7. All new compounds are listed in Table.
- D.L.J.Clive, Chem.Comm., 695(1973); H.J.Reich, I.L.Reich and J.M.Renga, J.Amer.Chem.Soc., 95,5813(1973); K.B.Sharpless, R.F.Lauer and A.Y.Teranishi, J.Amer.Chem.Soc., 95,6137(1973).
- 9. G.Massiot(whom we thank for this suggestion), to be published.